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Abstract: In this paper we deal with asymptotic properties of functionals
of parameters of Cox model from frequentist and Bayesian point of view.

Abstrakt: Článek se zabýva frekvenčnými a Bayesovskými asymptotickými
vlastnostemi funkcionál̊u parametr̊u Coxova modelu.

1. Introduction

When we deal with regression models in survival analysis, we estimate vari-
ous parameters as is cumulative hazard functions and regression parameter.
The large sample properties of the estimators are usually known. However,
sometimes we need to transfer these asymptotic features from estimators to
functionals of estimators. Then, the infinite-dimensional (functional) delta
method hand in hand with Hadamard differentiability may serve a tool.

However, sometimes the classical asymptotics is tedious or impossible to
conduct. Then, the Bernstein-von Mises theorem (BvM) as a bridge between
Bayesian and frequentist asymptotics represents a way since the asymptotic
properties can be always estimated from posterior sample. Basically, the the-
orem states that under mild conditions the posterior distribution of the model
parameter centered at the maximum likelihood estimator (MLE) is asymp-
totically equivalent to the sampling distribution of the MLE. In turn, we can
use the Bayesian asymptotics as an alternative to deriving the frequentialone.

In following we will summarize the frequentist and Bayesian asymptotic
properties of parameters of Cox model and show the way of establishing the
same for their functionals.

2. Cox’s regression model

Let us have a multivariate counting process N(t) = (N1(t), N2(t), .., Nn(t))>

observed in time interval [0, τ ]. We assume the multiplicative intensity model,
so that the intensity takes form Ii(t) = Yi(t)λi(t), where λi(t) is a determin-
istic bounded nonnegative continuous hazard rate function and Yi(t) is a
predictable {0, 1}-valued process indicating whether the i-th individual is at
risk of event whenever Yi(t) = 1. The processes Y1, .., Yn are assumed to be
observed alongside with N1, .., Nn. Further, for each i, let Zi be a p-variate
column vector of time-independent covariates associated with the i-th object.
We adopt the well-known Cox model of Cox [3], so the hazard rate λi is of
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following form
λi(t) = exp{β>Zi}λ0(t),

where β is a column vector of p unknown regression coefficients and λ0 is
an unknown and unspecified baseline hazard rate common for all individuals
(the hazard rate function for individual with Z = 0).

The traditional approach to the regression parameter estimation is via the
partial maximum likelihood theory. The estimator β̂ of β is defined as a
solution of U(β, τ) = 0, where U(β, t), t ∈ [0, τ ], is the score process equal to

U(β, t) =
n∑

i=1

∫ t

0

(
Zi −

∑n
j=1 Yj(s)Zj exp{β>Zj}∑n

j=1 Yj(s) exp{β>Zj}

)
dNi(s).

The cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(s)ds is usually

estimated using the Breslow estimator

Λ̂0(t) =
∫ t

0

[
n∑

i=1

Yi(s) exp{β̂>Zi}
]−1

d

n∑

i=1

Ni(s).

Notation: Let βtr and λtr (as well as Λtr(t) =
∫ t

0
λtr(s)ds) represent the

true values of parameters. Before stating following theorem we introduce
necessary notation:

qj(β, s) = lim
n→∞

1
n

n∑

i=1

Yi(s)Z⊗j
i exp{β>Zi}, j ∈ {0, 1, 2},

Σ(β, t) =
∫ t

0

[
q2(β, s)
q0(β, s)

− q1(β, s)⊗2

q0(β, s)2

]
q0(β, s)λtr(s)ds

V (t) =
∫ t

0

1
q0(βtr, s)

λtr(s)ds

E(t) =
∫ t

0

q1(βtr, s)
q0(βtr, s)

λtr(s)ds,

where t ∈ [0, τ ] and β ∈ Rp. Here we use the operator ⊗j for j = 0, 1, 2, that
is φ(s)⊗0 = 1, φ(s)⊗1 = φ(s) and φ(s)⊗2 = φ(s)φ(s)>.

Theorem 1 (Asymptotics for β and Λ0, [1]). Under Conditions A-D of
Andersen and Gill [1] the following is true:

1. √
n(β̂ − βtr)

D−−→ N (0, Σ(βtr, τ)−1)

2.

L (
√

n(Λ̂0(·)− Λtr(·))|
√

n(β̂ − βtr) = x) D−−→ W (V (·)− xE(·))
on the space of functions continuous to the right and with limits to
the left, D[0, τ ]. W denotes the standard Brownian motion.
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3. Bayesian modelling

In semiparametric Bayes method, the nonparametric part is assumed to be
a realization of a stochastic process. In Cox model, among the most popular
choices of a prior process for cumulative hazard function fall the Gamma and
Beta process, or alternatively the Dirichlet process when modelling the dis-
tribution function. All of these processes belong to a wider family of priors
conjugate to the right-censored survival data introduced by Kim and Lee in [6]
and [5]. Following their notation, it is said that a prior process on the c.d.f. F0

is a process neutral to the right if corresponding Λ0 =
∫

dF0(s)/(1−F0(s−))
is a positive nondecreasing independent increment process (a nonstation-
ary subordinator in the language of Lévy processes, further NII) such that
Λ0(0) = 0, 0 ≤ ∆Λ0(t) ≤ 1, for all t, w.p. 1, and either ∆Λ0(t) = 1 for some
t > 0 or limt→∞ Λ0(t) = ∞ w.p. 1.

The Lévy measure ν of an NII process is defined

ν([0, t]×B) = E


 ∑

s∈[0,t]

I(∆Λ0(s)) ∈ B r {0}



where t ≥ 0, B is a Borel subset of [0, 1]. Let us assume that the baseline
c.d.f. F0 is, a priori, a process neutral to the right and the corresponding Λ0

is an NII process with the Lévy measure

ν(dt, dx) =
1
x

gt(x)ζ(t) dx dt, t ≥ 0, x ∈ [0, 1],

where
∫ 1

0
gt(x)dx = 1, ∀t, and ζ is bounded and positive on [0, τ ]. And let

π(β) be prior distribution for β which is continuous at βtr with π(βtr) > 0.

Theorem 2 (Bernstein - von Mises theorem for β and Λ0, [5]). Under con-
ditions (A1)-(A5), (C1) and (C2) in [5] the following holds:

1.
lim

n→∞

∫

Rp

|fn(x)− φ(x)|dx = 0

with probability 1, where fn is the marginal posterior density of x =√
n(β − β̂) and φ is the normal density with mean 0 and variance

Σ(βtr, τ)−1.
2.

L (
√

n(Λ0(·)− Λ̂0(·)|
√

n(β − β̂) = x, σ{Ni,Zi, Yi; i = 1, .., n})
D−−→ W (V (·)− xE(·))

on the space of functions continuous to the right and with limits to the
left, D[0, τ ], with probability 1, as n → ∞. W denotes the standard
Brownian motion.

In first proposition of Theorem 2 we actually have convergence in L1 norm
which is stronger than the usual Bernstein-von Mises statement and also the
frequentists’ result in Theorem 1.
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4. Asymptotics for functionals of parameters

Joint posterior distribution of β and Λ0 and Hadamard differentiability with
the functional delta method (see II.8 in [2] or [4]) gives a way to establish
analogical result to Theorem 2 for any smooth functional of β and Λ0.

Let us take a sneak peek into the world of functionals and their differ-
entiability. Firstly, let us endow the space of cadlag functions D[0, τ ] with
supremum norm instead of usual Skorohod metric and let B be σ-algebra
generated by the supremum-norm open balls. We also need to switch to
broader definition of weak converegence: a sequence Xn of random elements
of (D[0, τ ],B) converges weakly to X, Xn

D−−→ X, if E f(Xn) = E f(X) for
every bounded continuous real-valued measurable function f on D[0, τ ].

The next step is the definition of differentiability of elements of normed
vector spaces like D[0, τ ] or D[0, τ ] × Rp. As it turns out the Hadamard
differentiability (or differentiability on compact sets) is well attunned for the
weak convergence theory.

Definition 1. Let us have two normed vector spaces B1, B2 , let η : B1 → B2

be some function and let S be set of all compact subsets of B1. Then the
function η is called Hadamard (compactly) differentiable at point x ∈ B1 with
derivative dηx (where dηx(h) is linear and continuous as a function of h) if
for all S ∈ S

η(x + th)− η(x)− dηx(th)
t

−→ 0 uniformly in h ∈ S.

Now we can introduce the functional delta method.

Theorem 3 (The delta method, [4]). Let B1 and B2 be normed vector
spaces with σ-algebras B1 and B2 nested between open-balls and open-sets
σ-algebras. Suppose η : B1 → B2 is Hadamard differentiable at a point
µ ∈ B1 with derivative dηµ and both η and dηµ are measurable w.r.t. B1 and

B2. Let Xn be a sequence in B1 such that Zn = n1/2(Xn − µ) D−−→ Z in B1,
where the distribution of Z is concentrated on a separable subset of B1. Then

n1/2(η(Xn)− η(µ))− dηµ(n1/2(Xn − µ)) P−−→ 0

and
n1/2(η(Xn)− η(µ)) D−−→ dηµ(Z).

In application a functional might often be a composition of several func-
tionals. Then the chain rule comes in handy, since it states that, for some
normed vector spaces B1, B2 and B3, if η : B1 → B2 and ς : B2 → B3

are Hadamard differentiable at x ∈ B1 and η(x) ∈ B2 respectively, then
η ◦ ς : B1 → B3 is Hadamard differentiable at x with derivative dςη(x) ◦ dηx.

Combining the results of Theorem 1 and 2 we get the large sample results
for an arbitrary functional of model parameters as long as it is Hadamard
differentiable.
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Corollary 1 (Frequential asymptotics for smooth functionals of β and Λ0).
Assume that the conditions of Theorem 1 are fulfilled and that B is a normed
vector space with a σ-algebra B nested between open-balls and open-sets σ-
algebras. If a functional η of the parameters β and Λ0, η : R×D[0, τ ] → B,
is Hadamard differentiable at the point (βtr,Λtr) with derivative dη(βtr,Λtr)

then the following is true:
√

n(η(β̂, Λ̂0)− η(βtr,Λtr))
D−−→ dη(βtr,Λtr)(X, W (V + E>Σ−1(βtr, τ)E)).

Corollary 2 (Bernstein-von Mises for smooth functionals of β and Λ0).
Let the assumptions of Theorem 2 be fulfilled. Assume that B is a normed
vector space with a σ-algebra B nested between open-balls and open-sets σ-
algebras. If a functional η of the parameters β and Λ0, η : R×D[0, τ ] → B,
is Hadamard differentiable at the point (βtr,Λtr) with derivative dη(βtr,Λtr)

then, with probability 1,

L (
√

n(η(β, Λ0)− η(β̂, Λ̂0)|σ{Ni,Zi, Yi; i = 1, .., n})
D−−→ dη(βtr,Λtr)(X, W (V + E>Σ−1(βtr, τ)E)).

In next we will deal with most common functionals present in Cox regres-
sion model.

Baseline survival function. The baseline survival function S(t) = 1−F (t)
can be expressed as

S0(t) =
∏

[0,t]

[1− dΛ0]

where with
∏

[a,b] we denote the product integral over the interval [a, b]. It
can be seen that the mapping η : D[0, τ ] → D[0, τ ] such that η : Λ0 7→ S0(·)
is Hadamard differentiable (see Prop. II.8.7 in [2]). The derivative at the
point Λ0 ∈ D[0, τ ] is equal to

(dηΛ0(H))(t) = −
∫

s∈[0,t]

∏

[0,s)

[1− dΛ0]H(ds)
∏

(s,t]

[1− dΛ0]

= − S0(t−)H(t), t ∈ (0, τ ].

The MLE estimator of S0 is Ŝ0(t) =
∏

[0,t][1 − Λ̂0] and in case of no covari-
ates coincides with Kaplan-Meier estimator. Let us denote the true survival
function by Str . Using this result, Corollary 1 and supposing that the dis-
tribution is absolutely continuous, we have the convergence in every t ∈ [0, τ ]

√
n(Ŝ0(t)− Str(t))

D−−→ − Str(t)W (V (t) + E(t)>Σ−1(βtr, τ)E(t)).

The asymptotic variance Str(t)2[V (t) + E(t)>Σ−1(βtr, τ)E(t)] can be esti-
mated by plugging-in the estimators β̂, dΛ̂0 and Ŝ0 instead of βtr, λtrds and
Str in V (t), Σ and E(t). This result may be used to calculate the pointwise
confidence limits for S0(t) or alternatively we can specify the limiting dis-
tribution as the supremum of transformed Brownian motion since using the
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continuous mapping theorem gives

sup
t∈[0,τ ]

{
n

V̂ (τ) + Ê(τ)Σ̂−1(β̂, τ)Ê(τ)

}1/2 |Ŝ0(t)− Str(t)|
Ŝ0(t)

D−−→ sup
x∈[0,1]

|W (x)|

Using Corollary 2 we get the Bayesian asymptotic properties. The poste-
rior distribution of the process S0 centered around ML estimator converges
weakly w. p. 1 to the same limiting process

L (
√

n(S0(·)− Ŝ0(·)|σ{Ni,Zi, Yi; i = 1, .., n})
D−−→ − Str(·)W (V + E>Σ−1(βtr, τ)E).

This knowledge can be used when we want to avoid the deriving of the as-
ymptotic variance or using its plug-in estimator and we can create point-
wise credibility bands from a posterior sample instead. Bayesian version
of the distribution of a supremum of asymptotic distribution can be obtain
from the sample of supremum values for each of posterior realisations of
S

(k)
0 = η(β(k),Λ(k)

0 ), k = 1, .., K. Then, for example, we can find α > 0 such
that

P (sup
√

n|S0(·)− Ŝ0(·)| > α|σ{Ni,Zi, Yi; i = 1, .., n}) = 0.95

by taking the 95% sample quantile of the supremum values of all posterior
realisations.

Survival function for Z = Z?. The survival function for an individual with
certain value of covariate is defined as

S(t;Z?) =
∏

[0,t]

[
1− exp{β>Z?}dΛ0

]

The mapping η : R ×D[0, τ ] → D[0, τ ] which assigns a point (β, Λ0) ∈ R ×
D[0, τ ] the value S(·;Z?) is again Hadamard differentiable. Here we, however,
need to use the chain rule feature for the composition of two mappings η =
η2 ◦ η1 where η1(β, Λ0) = exp{β>Z?}Λ0 and η2(x) =

∏
[0,·] [1− dx].

The derivative at the point (β, Λ0) ∈ R×D[0, τ ] is equal

(dη(β,Λ0)(h, H))(t) = −
∫

s∈[0,t]

∏

[0,s)

[
1− eβ>Z?

dΛ0

] (
eβ>Z?

h>Z?Λ0(ds)

+ eβ>Z?

H(ds)
) ∏

(s,t]

[
1− eβ>Z?

dΛ0

]
, t ∈ [0, τ ].

So, the limiting process in both frequential and Bayesian asymptotics is

− Str(t;Z?)eβ>trZ?

[X>Z?Λtr(t)+W (V (t)+E(t)>Σ−1(βtr, τ)E(t))], t ∈ [0, τ ].

where X is normally distributed zero-mean variable with variance Σ−1(βtr, τ).
The asymptotic variance equals

{eβ>trZ?

Str(t;Z?)}2 [
(E − Z?Λtr)>Σ−1(βtr, τ)(E − Z?Λtr) + V

]
.
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and its estimator can be found by plugging-in the estimated parameters β̂ and
dΛ̂0 instead of βtr and λtrds. Similarly as when dealing with baseline survival
function, the pointwise bands or supremum can be obtained via plugged-in
estimator variance or by using the posterior sample of S(β,Z?).

Median residual life. The median residual life for individual with the co-
variate Z = Z? is γt0(Z?) such that

S(γt0(Z?);Z?)
S(t0;Z?)

= 0.5, for t0 ∈ (0, τ).

It is not difficult to see that for Cox model the median residual life equals

γt0(Z?) = Λ−1
0 (Λ0(t0) + log 2 exp{−β>Z?}).

To be able to obtain asymptotic distribution of ηt0 we have to investigate the
differentiability of the function η : (Λ0, β) 7→ γt0 which could be again ex-
pressed as a composition of functions η1(Λ0, β) = Λ0(t0)+ log 2 exp{−β>Z?}
and η2(Λ0, z) = Λ−1

0 (z). Both η1 and η2 are Hadamard differentiable. For
derivative of η2 see Prop. II.8.4 in [2] and application can be seen in e.g. [3].

5. Illustration

We illustrate the model on n = 40 simulated survival times from a hazard rate
of form λ(t; z) = 0.1t e1.5z where z was randomly generated from N(2, 1).
For the prior of cumulative hazard rate we chose Beta process prior with
parameters Λ(t) = 0.05t and c(t) = 10e−0.05t. The Beta process on the
interval [0, τ ] with mean H ∈ D[0, τ ] and scale parameter c(t) > 0 is defined
as a nonstationary subordinator with Lévy measure

ν(dt, dx) = c(t)x−1(1− x)c(t)−1dx dH(t).

It can be shown that this process satisfies the conditions of Theorem 2. For
simulation of Beta process see [7]. We ran 5000 repetitions of MCMC and
used last 2000 for analysis of posterior. Posterior summaries on regression
parameter: β is mean(β) = 1.78 and sd(β) = 0.37. The frequentist’ estimator
is 1.53 with sd = 0.41. The results can be seen in Figure 1. We may see
that Bayesian and frequentist estimators of limiting distributions are quite
similar.
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